Technical Report Report

DETERMINATION OF GAS BEARING STABILITY
BY RESPONSE TO A STEP-JUMP

by

H. G. Elrod, Jr. J. T. McCabe T. Y. Chu

Prepared under

Contract Nonr-2342 (00) Task NR 062-316

Supported Jointly by

DEPARTMENT OF DEFENSE
ATOMIC ENERGY COMMISSION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Administered by

OFFICE OF NAVAL RESEARCH Department of the Navy

Reproduction in Whole or in Part is Permitted for any Purpose of the U. S. Government

N66 24682

ABSTRACT

The stability of a gas bearing is treated by a new procedure in which the bearing film is characterized by its responses to step-jump displacements. Duhamel's theorem is invoked to generalize these step responses in a system of dynamical equations. Stability is determined by calculation of a "growth factor" for each degree of freedom.

auchon

NOMENCLATURE

- $A_n = \text{nth LaGuerre coefficient (equation 8)}$
- B_{i} = jth LaGuerre coefficient (equation 10)
 - C = Ground-in clearance
- δF_{ij} = the difference in F_{ij} between time t and equilibrium at time zero (equation 4)
- $H(t-\tau)$ = the response function observed at time t produced by stimulus at time τ (equation 4)
- I_{T} , I_{p} = shaft transverse and polar moments of inertia
 - L = length of bearing
- L_1 , L_2 = distances from shaft mass center to bearings one, two
- $L_n(x) = nth$ LaGuerre polynomial (equation 6)
 - M = shaft mass
 - p = ambient pressure
 - R = shaft radius
 - r(t) = a response function (equation 3)
 - s(t) = a stimulus (equation 3)
 - t = time variable
 - W_i = Gauss integration weighting factors
- δx , δy = small displacements in x and y directions
 - α = attenuation constant
- α_1 , α_2 = shaft angular coordinates
 - β = growth factor (equation 14)

NOMENCLATURE (Cont.)

 γ = growth frequency (equation 15)

ε = eccentricity ratio

$$\Lambda = \frac{6\mu\Omega}{P_a} \left(\frac{R}{C}\right)^2$$

 $\mu = viscosity$

 $\tau = dummy variable$

 Ω = shaft angular speed

TABLE OF CONTENTS

		Page
	ABSTRACT	i
	NOMENCLATURE	ii
1.	INTRODUCTION	1
2.	TECHNICAL DISCUSSION	3
	2.1 Response to Step-Jump	3 4
	Acting Gas Journal Bearing	9 16
3.	CONCLUSIONS	25
4.	RECOMMENDATIONS	26
	REFERENCES	27
	APPENDIX A	Al

LIST OF FIGURES

Fig. No.		Page
2-1	Approximation of "Forcing Function" by Successive Step-Jumps	4
2-2	Infinitely-Long Gas-Lubricated Journal Bearing	5
2-3	Force Response to Step-Jump for an Infinitely Long Journal Bearing - H _{XX} and H _{yy} vs. Time	6
2-4	Force Response to Step-Jump for an Infinitely Long Journal Bearing - H_{xy} and H_{yx} vs. Time	7
2-5	Response to Small Perturbation About an Equilibrium Position for Infinitely Long Journal Bearing Orbit-Plot of Shaft Mass Center Coordinates	10
2-6	Response to Small Perturbation About an Equilibrium Position for Infinitely Long Journal Bearing Orbit-Plot of Shaft Mass Center Coordinates	11
2-7	Response to Small Perturbation About an Equilibrium Position for Infinitely Long Journal Bearing Orbit-Plot of Shaft Mass Center Coordinates	12
2-8	Single Bearing - Translational Stability	14
2-9	The Critical Translation Stability Ratio, Single Bearing, $L/D \rightarrow \infty$ (After H. Marsh)	15
2-10	The Translational Critical Frequency Ratio, Single Bearing, $L/D \rightarrow \infty$ (After H. Marsh)	15
2-11	Journal Coordinate System	17
2-12	Translational Motion of Two Bearing System-Shaft Mass Center Coordinates vs. Time	19
2-13	Conical Motion of Two Bearing System Shaft-Angular Coordinates vs. Time	20
2-14	Translational Motion of Two Bearing System-Shaft Mass Center Coordinates vs. Time	21

LIST OF FIGURES (Concl.)

Fig. No.		Page
2-15	Conical Motion of Two Bearing System Shaft-Angular Coordinates vs. Time	22
2-16	Conical Motion of Two Bearing System-Angular Coordinates of Shaft - α_1 vs. α_2	23
2-17	Two Bearing System - Critical Bearing Separation	24

1. INTRODUCTION

Recent interest in gas hybrid journal bearings has promoted a closer look at the stability of rotor-bearing systems and, in particular, at the methods by which stability might be predicted. In general, two different methods have been used to handle the mathematical stability problem. The first method treats small perturbations from a hypotesized steady-state mode of operation and determines whether these perturbations grow or diminish. The Routh-Hurwitz criterion is used in this connection. The second method consists of direct digital computation of all dynamical and fluid film equations and is known as the "orbit" method. It can handle linear, as well as non-linear, aspects of the problem. Both procedures have been employed extensively in earlier gas-bearing stability work at The Franklin Institute (1,2,3)* and elsewhere.

The foregoing methods of stability analysis have their advantages and disadvantages. The advantage of the perturbation method is principally that of any linearized analysis; namely, that superposition is possible and results are easily generalized. It has the disadvantage that unusual geometries are not easily accommodated and that in multidegree-of-freedom systems the characteristic equation is exceedingly complicated. The second method has great flexibility, and can incorporate grooves and other aspects of bearing design quite readily. It gives shaft and film behavior in great detail. It is excellent for delineating the performance of a particular design, but the lack of generality of its solution makes parametric investigations expensive. Its principal disadvantage is its consumption of considerable computer time.

A new procedure for stability analysis is presented here which utilizes the strong points of both the orbit and the linearized approaches. The procedure obviates the necessity for a solution of a large character-

^{*} Number in parenthesis refer to references.

istic equation on the one hand, while avoiding repetitious calculations of fluid-film pressure distributions on the other. Briefly, the method consists of using an orbit program to give the responses to step-jump displacements in each degree of freedom of a system. By means of Duhammel's theorem these step responses can be used in a system of dynamical equations. A possibility then exists of running linearized orbit programs without the necessity of detailed fluid-film calculations for every case studies. The computing time of the original orbit program is thereby greatly lessened.

2. TECHNICAL DISCUSSION

2.1 Response To Step-Jump

In a linear system, superposition of forcing functions leads to superposition of responses. If the system stimulation is sinusoidal in character, the methods of Fourier synthesis can be used to predict responses to generalized forcing functions. The same sort of generalization is also possible if the response to step-jump stimulus is known, and because this type of response is more readily obtained from an orbit program, the analysis here will be based upon it.

Generalization of the response to step-jump, can be accomplished by means of Duhamel's Theorem. A brief heuristic derivation is as follows: Suppose that r(t), a response, is linearly related to s(t), a stimulus. Let H(t-τ) denote the r-function observed by time, t, as produced by unit increase of the s-function at time, τ. Then we can consider the more general response occasioned by a more general stimulus to be obtained by superimposed step-jumps as shown in Figure 2-1. The jagged contour can be made to approximate the smooth curve with arbitrarily nign precision by reduction or Δτ. Clearly,

$$r(t) = s(o) H(t) + \sum_{n} (\Delta s)_{n} H(t - n\Delta \tau),$$

$$= s(o) H(t) + \sum_{n} (\frac{\Delta s}{\Delta \tau})_{n} H(t - n\Delta \tau) \Delta \tau.$$
[1]

With $n\Delta\tau = \tau$, and $n \to \infty$, $\Delta\tau \to o$, this equation becomes

$$r(t) = s(o) H(t) + \int_{0}^{t} \dot{s}(\tau) H(t-\tau) d\tau$$
 [2]

FIG.2-1. APPROXIMATION OF "FORCING FUNCTION"BY SUCCESSIVE STEP-JUMPS

Alternatively, integration by parts gives:

$$r(t) = H(0) s(t) + \int_{0}^{t} s(\tau) \dot{H}(t-\tau) d\tau.$$
 [3]

This second form is found more useful in present applications.

2.2 Gas-Bearing Response Functions

To illustrate the character of the response to step-jump in a typical gas-bearing application, let us consider the forces on an infinitely-long gas-lubricated journal bearing, as shown in Figure 2.2. Corresponding to some vertical loading, the shaft center will, if stable, assume some equilibrium position (x_0, y_0) . In this case the integrated fluid film forces become: $F_x = 0$, $F_y = \text{load}$. Now if the shaft is suddenly given a small x-wise displacement, δx , and held there, both F_x and F_y will be affected. There will be transient force responses to the step-jump in "x" and new steady-state forces will asymptotically be

FIG. 2-2. INFINITELY-LONG GAS-LUBRICATED
JOURNAL BEARING

achieved. Similar results can be found for any small y-displacement, δy . Typically, the results due to unit δx_i at t = 0 can be expressed as:

$$\delta F_{ij} = F_j(t) - F_j(x_o, y_o); H_{ij} = C \delta F_{ij}/p_a RL.$$
 [4]

Orbit programs are well suited to provide responses for the kind of displacement just hypothesized. Figures 2-3 and 2-4 give computer results for an infinite journal bearing operating with $\varepsilon=0.6$, $\Lambda=1.46$. It should be noted that the \bar{n}_{ij} curves give total dimensionless shaft forces — not fluid film details — and that these same curves always apply for small deviations from the specified operating condition, regardless of the rest of the shaft dynamics. The near-antisymmetry, $H_{ij} = -H_{ji}$ is reminiscent of journal bearings with a continuous film of incompressible fluid $^{(5)}$. In fact, at time zero, when the gas is "trapped" by the sudden small displacement (so that ph = constant at each point in the bearing) the antisymmetry is exactly true.

For computer purposes, it is preferable to have the H_{ij} in analytical, rather than in tabular, form. Asymptotically, it may be expected that

$$H_i \rightarrow H_i(\infty) + (constant)e^{-\alpha t}$$
. [5]

FIG. 2-3. FORCE RESPONSE TO STEP-JUMP FOR AN INFINITELY LONG JOURNAL BEARING — H_{XX} AND H_{YY} VS. TIME

FIG. 2-4. FORCE RESPONSE TO STEP-JUMP FOR AN INFINITELY LONG JOURNAL BEARING — H_{xy} AND H_{yx} VS. TIME

To represent intermediate behavior, an expansion in LaGuerre's polynomials is used. These polynomials are chosen because they are orthogonal in the interval zero to infinity with a exponential weighting factor. As a consequence, the coefficients found for these polynomials are "best" in the least-squares sense.

They have the form: (6)

$$L_{n}(x) = \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} \frac{(-x)^{k}}{k!},$$

$$L_{0}(x) = 1,$$

$$L_{1}(x) = 1 - x,$$
ect. [6]

and

$$\int_0^\infty e^{-x} L_n(x) L_m(x) dx = \delta_{mn}.$$

The series approximation:

$$H(t) - H(\infty) = \sum_{n=0}^{\infty} A_n L_n(\alpha t) e^{-\alpha t},$$
The coefficients A_n are determined by multiplication of both

is used. The coefficients \mathbf{A}_n are determined by multiplication of both sides of this last equation by $\mathbf{L}_m(\alpha \mathbf{x})$ and integrating. Thus

$$\int_{0}^{\infty} L_{m}(\alpha t) [H(t) - H(\infty)] dt = \int_{0}^{\infty} \sum_{n=0}^{\infty} A_{n} L_{n}(\alpha t) L_{m}(t) e^{-\alpha t} dt$$

$$= A_{m}/\alpha.$$
[8]

Prior to the running of a linearized orbit, an accurate value of the attenuation coefficient " α " is not known and one must be guessed. Fortunately, a choice is not critical, inasmuch as any "error" in the guessed value will be absorbed by the LaGuerre coefficients. However, if the attenuation coefficient is optimally chosen, the coefficients of the LaGuerre series will approach zero most rapidly. To convert to a new attenuation coefficient, it is not necessary to rerun the orbit program. Instead, the following conversion relation can be used. Thus:

$$\sum_{k} B_{k} L_{k}(\beta t) e^{-\beta t} = \sum_{k} A_{k} L_{k}(\alpha t) e^{-\alpha t},$$
 [9]

where:

$$B_{j} = \sum_{n=0}^{j} (-1)^{j+n} \frac{(\beta-\alpha)^{j-n} \beta^{n+1}}{\alpha^{j+1}} \frac{j!}{n! (j-n)!} A_{n}.$$
 [10]

To approximate the results in Figures 2-3 and 2-4, an α = 1.0 was used. When ten LaGuerre polynomials are used therewith, the numerical results are indetectibly different on the scale shown.

2.3 Stability Characteristics of the Infinitely Long Self-Acting Gas Journal Bearing

The foregoing theory was first applied to calculated the stability threshold of an infinitely long self-acting gas journal bearing operating with a steady load appropriate to $\varepsilon=0.6$, $\Lambda=1.46$. Information on this geometry and operating condition is available from several sources (2,7). The procedure for using the information from step-jump responses is straight forward. Dynamical equations are written in the form:

$$m\delta\ddot{\mathbf{x}} = \delta\mathbf{F}_{\mathbf{x}\mathbf{x}} + \delta\mathbf{F}_{\mathbf{y}\mathbf{x}},$$

$$m\delta\ddot{\mathbf{y}} = \delta\mathbf{F}_{\mathbf{x}\mathbf{y}} + \delta\mathbf{F}_{\mathbf{y}\mathbf{y}},$$
[11]

with

$$\delta F_{yx} = H_{yx}(o) \delta y(t) + \int_{0}^{t} \delta y(\tau) \dot{H}_{yx}(t-\tau) d\tau \text{ etc.}$$
 [12]

Typical initial conditions assumed in the present case were:

$$\delta \mathbf{x}(\mathbf{o}) = -1$$
 $\delta \mathbf{\dot{x}}(\mathbf{o}) = 0$
 $\delta \mathbf{\dot{y}}(\mathbf{o}) = 0$
 $\delta \mathbf{\dot{y}}(\mathbf{o}) = -1$

The corresponding lineareized orbits were computed numerically. Eventual growth of the displacements δx and δy was taken to indicate instability, with contrary results being taken to indicate stability. Figure 2-5 shows a linearized orbit deemed to be stable, Figure 2-6 shows one deemed to be marginally stable, and Figure 2-7 shows one deemed to be highly unstable. Physically, the difference between these cases lies in the mass associated with the shaft.

FIG.2-5. RESPONSE TO SMALL PERTURBATION ABOUT AN EQUILIBRIUM POSITION FOR INFINITELY LONG JOURNAL BEARING ORBIT PLOT OF SHAFT MASS CENTER COORDINATES

FIG.2-6. RESPONSE TO SMALL PERTURBATION ABOUT AN EQUILIBRIUM POSITION FOR INFINITELY LONG JOURNAL BEARING ORBIT PLOT OF SHAFT MASS CENTER COORDINATES

FIG. 2-7. RESPONSE TO SMALL PERTURBATION ABOUT AN EQUILIBRIUM POSITION FOR INFINITELY LONG JOURNAL BEARING ORBIT PLOT OF SHAFT MASS CENTER COORDINATES

To remove as much as possible the personal judement factor in setting the stability threshold, a growth factor was calculated from the orbit results. Asymptotically δy was assumed to possess the form:

$$\delta y(t) = Ae^{\beta t} \sin (\gamma t + \phi), \qquad [13]$$

and the growth factor was computed from four successive values of δy (spaced by Δt).

Thus:

$$e^{2\beta\Delta t} = \frac{\delta y_3 \, \delta y_1 - \delta y_2^2}{\delta y_2 \, \delta y_0 - \delta y_1^2}.$$
 [14]

The associated frequency " γ " was also of interest:

$$\cos (\gamma \Delta t) = \frac{\delta y_0 + \delta y_2 e^{-2\beta \Delta t}}{2 \delta y_1 e^{-\beta \Delta t}}.$$
 [15]

Figure 2-8 shows the growth-rate found for the given operating condition $\varepsilon=0.6$, $\Lambda=1.46$, and various values of dimensionless mass. The critical value of 2.17 converts to $\frac{MC}{4\pi p}\frac{\omega^2}{L}=0.831$. In Figure 2-9 this last value is compared with the results of Marsh and of Castelli and Elrod. The ratio of the critical value of " γ " as obtained from eq. [15] is conpared in Figure 2-10 with Marsh's work. Agreement is excellent in each case.

Computer runs to provide individual points on the curve in Figure 2-8 can be performed very quickly (approx. 30 secs on a Univac - 1107 computer). Part of the speed achievable is due to a special integration procedure used in the convolution integral. To obviate the need for using data at every time step, a modified Gauss integration rule was adopted for which the locations and ordinate weighting factors W_i are given below.

FIG.2-8. SINGLE BEARING - TRANSLATIONAL STABILITY

<u>FIG. 2-9</u>. THE CRITICAL TRANSLATIONAL STABILITY RATIO, SINGLE BEARING, $L/D \rightarrow \infty$ (AFTER H.MARSH)

FIG. 2-10. THE TRANSLATIONAL CRITICAL FREQUENCY RATIO, SINGLE BEARING, L/D→∞ (AFTER H.MARSH)

<u>+ X</u> _i	wi
0	.197197636
8/40	.199459835
15/40	.139711837
19/40	.062229510

The rule is exact for sixth-degree polynomials and nearly exact for polynomials up to thirteenth degree. (For example, it gives $\int_0^1 x^{13} dx = 0.07136$ instead of 0.07143).

2.4 Stability Characteristics of a Two-Bearing System

To show the versatility of the new step-jump technique, a two-bearing system was next studied. This system was conceived to consist of two equally-loaded long bearings each similar to the single bearing discussed in Section 2.3. Figure 2-11 shows the geometrical arrangement and defines linear and angular coordinates appearing in the dynamical equations. The shaft rotates with angular velocities $(-\alpha_2, \alpha_1 \text{ and } \Omega)$ about the x, y and z) axes respectively through the shaft center of gravity and their time derivatives are of disturbance magnitude.

$$M\delta\ddot{x}_{M} = \delta F_{x,1} + \delta F_{x,2},$$

$$M\delta\ddot{y}_{M} = \delta F_{y,1} + \delta F_{y,2}.$$
[16]

Here $_{x,1}^{\delta}$ represents the force in the x-direction on the shaft by bearing #1, etc. The average linear coordinates of the shaft within the bearings are:

$$\delta \mathbf{x}_{1} = \delta \mathbf{x}_{M} + \mathbf{L}_{1} \quad \delta \alpha_{1} \qquad \delta \mathbf{x}_{2} = \delta \mathbf{x}_{M} - \mathbf{L}_{2} \quad \delta \alpha_{1}$$

$$\delta \mathbf{y}_{1} = \delta \mathbf{y}_{M} + \mathbf{L}_{1} \quad \delta \alpha_{2} \qquad \delta \mathbf{y}_{2} = \delta \mathbf{y}_{M} - \mathbf{L}_{2} \quad \delta \alpha_{1}$$
[17]

The separation of the bearings is presumed large enough to neglect the effects of conical misalignment on forces or torques. Therefore:

FIG. 2-11. JOURNAL COORDINATE SYSTEM

$$\delta F_{x,1} = H_{xx}(0) \delta x_{1}(t) + \int_{0}^{t} \delta x_{1}(\tau) \dot{H}_{xx}(t - \tau) d\tau + H_{yx}(0) \delta y_{1}(t) + \int_{0}^{t} \delta y_{1}(\tau) \dot{H}_{yx}(t - \tau) d\tau$$
[18]

etc., where the H-functions here are the <u>same</u> as for the single bearing of section 2.3. The angular acceleration equation becomes:

$$I_{T}\alpha_{1} = I_{p}\alpha_{2}^{\dot{\alpha}} + (L_{1} \delta F_{x,1} - L_{2} \delta F_{x,2}),$$

$$I_{T}\alpha_{2} = -I_{p}\alpha_{1}^{\dot{\alpha}} + (L_{2} \delta F_{y,2} - L_{1} \delta F_{y,1}).$$
[19]

Here I_T and I_D are the transverse polar moments of inertia.

For the brief, illustrative study of two-bearing stability, a system was taken which has marginal translational (as opposed to conical) stability. A dimensionless mass (as per Figure 2-8) of 2.0 was chosen. For large enough bearing separation, the results of Section 2.3 are duplicated. As the bearing locations are brought together, the immunity of the system to conical whirl is reduced and the conical stability threshold is transgressed. These features are illustrated by Figures 2-12 to 2-15.

For the response shown in Figures 2-12 and 2-13 the total bearing separation is 20, and the bearing system is stable in both the translational and conical modes. On the other hand, when the bearing separation is reduced to 4, all other operating conditions remaining fixed, the translational modes remain stable, while the conical modes become unstable. This fact is shown in Figures 2-14 and 2-15. Figure 2-16 shows the conical orbit of this unstable condition, and Figure 2-17 shows the determination of the stability threshold by means of a plot of bearing separation versus exponential growth factor. The critical bearing separation differs from that given by Marsh's approximate formula by less than 8%.

Listings of the digital computer programs used to implement the above analyses are given in Appendix A.

FIG. 2-12. TRANSLATIONAL MOTION OF TWO BEARING SYSTEM
SHAFT MASS CENTER COORDINATES VS TIME

FIG. 2-13. CONICAL MOTION OF TWO BEARING SYSTEM SHAFT ANGULAR COORDINATES VS TIME

FIG. 2-14. TRANSLATIONAL MOTION OF TWO BEARING SYSTEM
SHAFT MASS CENTER COORDINATES VS TIME

FIG. 2-15. CONICAL MOTION OF TWO BEARING SYSTEM SHAFT ANGULAR COORDINATES VS TIME

FIG. 2-16. CONICAL MOTION OF TWO BEARING SYSTEM ANGULAR COORDINATES OF SHAFT - a, VS. az

FIG. 2-17. TWO BEARING SYSTEM-CRITICAL BEARING SEPARATION

3. CONCLUSIONS

The utility of Duhamel's method has been demonstrated for numerical investigations of stability and dynamics of bearing systems. This new "step-response" method complements bearing orbit-programs by permitting rapid parametric examinations of stability-in-the small. In many instances, the method would appear to be preferable to methods employing complex variable in that (a) computed quantities have easily interpreted physical counterparts and (b) the complexity of the procedure augments only slightly with system size.

4. RECOMMENDATIONS

- 1. As a consequent of the implementation of the step response method, it appears desirable to standardize sections of the analysis, such as the manner by which the response functions are obtained, the determination of the LaGuerre coefficients, the optimization of the attenuation factor, etc. so that these sections can be used as library routines for other types of bearing configurations.
- 2. The method described in this report should be used to study the stability of other types of bearings. In particular, the externally pressurized thrust bearing and hybrid journal bearings. With the appropriate organization of the component parts of the analysis, the stability analysis of these more complex bearings can be done in a straight forward manner.

REFERENCES

- 1. Licht, L. and Elrod, H. G., Jr., An Analytical and Experimental Study of the Stability of Externally-Pressurized, Gas-Lubricated Thrust Bearings, FIRL Interim Report I-A2049-12 Contract Nonr-2342(00) Task NR061-113 Administered by Office of Naval Research, Dept. of the Navy.
- 2. Castelli, V. and Elrod, H. G., Jr., Solution of the Stability Problem for 360 Deg. Self-Acting Gas-Lubricated Bearings, ASME paper No. 64-LubS-10.
- 3. McCabe, J. T., Shapiro, W., and Chu, T. Y., The Analysis and Design of a Gas Bearing System for a Brayton Cycle Turbine-Compressor, FIRL Final Report F-B2250 to Pratt and Whitney Aircraft.
- 4. Churchill, R. V., Modern Operational Mathematics in Engineering, McGraw-Hill, 1944.
- 5. Reddi, M and Trumpler, P., Stability of the High Speed Journal Bearing Under Steady Load, Journal of Eng. for Industry, Trans. of the ASME, Vol. 84, Series B No. 3, 1962.
- 6. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Math. Series 55, U.S. Government Printing Office, Washington, D.C. 1964.
- 7. Marsh, H., The Stability of Aerodynamic Gas Bearings, Mech. Eng. Science Monograph No. 2, Institute of Mech. Eng. Westminster, England, 1965.

THE FRANKLIN INSTITUTE RESEARCH LABORATORIES

APPENDIX A
Fortran Program Listings

The program used to produce the LaGuerre coefficient (ROSIE) for a long, plane journal bearing was compiled on an IBM 7094 in FORTRAN IV and uses "NAMELIST" for input. This program is an adaption from a more generalized program and, as a consequence, has certain input that are not applicable for the type of problem treated in this report

ROSIE contains the following routines:

MAIN

SUBROUTINE CUREAL (KAY)

SUBROUTINE SET 1

SUBROUTINE ALFA (KK)

SUBROUTINE FILM

SUBROUTINE FORCE (K)

SUBROUTING QQO

FUNCTION ALAGER (N, ALPHAT)

The MAIN program require the following input in NAMELIST form:

SXM = 0.0

SYM = eccentricity

SA1 = 0.0 no shaft rotation

SA2 = 0.0

SB1 = 0.0} no bearing rotation

SB2 = 0.0

M = no. of circumferential grid intervals

N = no. of axial grid intervals

PLAMDA = $\frac{6\mu\omega}{P} \left(\frac{R}{C}\right)^2$

ROVL = R/L

DT = time step

TMAX = maximum allowable no. of time steps before termination

INF = FALSE

ORDER = order of the LaGuerre Poly. (an integer)

ALPHA = the attenuation constant " α "

NK = 3

NCASE = case no. (an integer)

SUBROUTINE CUREAL is specially written for each type of problem and contains a specification for the step-displacement from equilibrium; DELDEG is the size of the step taken.

For each degree of freedom, the LaGuerre coefficient are punched out in a loop which goes from K = 1, ORDER. The information on each card is

K, ORDER, XM, YM, AX(K), AY(K),

where XM and YM are the coordinates; AX and AY are the coefficient representing the forces in the X and Y directions. The FORMAT is 213, 2F7.3, 2E18.8, 26 X 2H\$P

The Dynamics program which reads the punched card output listed above was compiled in FORTRAN IV on a UNIVAC 1107. The routines used are ELRO (Main program)

SUBROUTINE LAGUER

FUNCTION ALAGER (N. ALPHAT)

The input consist of

 READ:NDEG, NORDER, KSTEP, ALPHA FORMAT 316, F10.0

where

NDEG = no. of degrees of freedom (2)

NORDER = order of LaGuerre polynomial

KSTEP = the interval at which the growth factors are to be printed out (10)

2. For each degree of freedom:

READ: punched card output described above

3. READ: $(H(\infty)_{ij}, i = 1,2) J = 1,2)$ FORMAT 4E15.8

> (this input must be punched from printed output of coefficient program)

4. READ:NT, NTMAX, DELTAT FORMAT 216, F10.0

where

NT = integration interval

NTMAX = maximum no. of time steps

DELTAT = the time step DT x NT

5. READ: KLUE, AMASS, EL1, EL2, TRANSI, POLARI, ASYMM FORMAT 16, 6F10.0

where

KLUE = 1, go back to point 5 READ

= 2, go back to point 4 READ

= 3, Stop

AMASS = shaft mass (non-dimensional) $\frac{MC \Omega^2}{4 p_a RL}$

EL1, EL2 = distance from shaft mass center to center line of brg, 1 and 2 divided by length of bearing

TRANSI, POLARI = shaft transverse and polar moment of inertia (non-dimensional

$$\begin{bmatrix} I_T \\ I_p \end{bmatrix} = \frac{C\Omega^2}{4 p_a RL^3}$$

ASYMM = initial displacement of brg. 1 relative to brg. 2

The program listings follow.

```
COMMON SYM, SYM, SA1, SA2, SR1, SR2, T.M, N.M1, M2, NN, DTHE, DETA, XM, YM, A1,
           A2.B1.B2,H163.17].S163).C163).HTHE163.17].HETA[63.17].
  1
 - 2
          0163,171,PIAMDA:RROVLL,DT.QQ(63,171,TMAX.INF,EQ(63,171,
  3
           P[63,17],FORCEX[51],FORCEY[51],TORKY[51],TORKY[51],ORDER,
           ALPHA, AX(20), AY(20), AXZ(20), AYZ(20), AINF(20), NK, KLUE,
           DFLDEG, KOUNT
   COMMON/FACTOR/FE, FFE, FFFF, FFFFF
   LOGICAL FAIL PASS INF
   INTEGER OUT, ORDER
   NAMELIST/INPUT/SXM,SYM,SA1.SA2,SR1,SR2,H,N,
                                                        PLANDA, ROVL, DT.
  1 TMAX, INF, ORDER, ALPHA, NK, NCASE
   IN=5
   PUT=6
   KAY=1
   FAIL = .FALSE.
   PASS = .FALSE.
   KLIIF=1
10 READTIM, INPUTI
   WRITE[OUT,1]
 1 FORMATITHIS
   WRITE [OUT, INPUT]
   PROVIL = ROVL**2
   CALL SET1
   CALL FILM
   FE = .5/DTHE
   FFF = 1./DTHE++2
   FFFF = .5/DFTA
   FFFFF = 1./DETA++2
   DO 15 1=41.M2
   O(1,1) = H(1,1)
15 OLT. NNI= HET. NNI
   IFIFAILIGO TO 200
   IFIPASSI GO TO 25
   DO 20 J=M1.M2
   70 20 J=2.N
(L_{\bullet}I)H = (L_{\bullet}I)\cap OS
   1K=1
25 CONTINUE
   nn 30 J=2,N
   [[.t+1,J]=Q[M+1,J]
[L.E] 0=[L.E+M] 0 0E
   TETTMES GO TO 35
   60 TO 34
35 DO 36 !=M1.M2
   0[1,1] = 0[1,2]
36 OLI, MNI= OLI, NI
34 CALL DOD
   TE (FAIL) GO TO 200
   IFIT .LE. TMAXI GO TO 40
   GO TO 50
40 T = T+TT
42 FORMATT7E15.71
   JK=JK+1
   GO TO 25
50 00 60 J=41.M2
   DO 68 J=1.NN
```

```
KS=1
   CALL FORCETKS1
 " WRITE (OUT, 16) T
   WRITE[OUT, 42][[P[f]J1, J=1,17], f=1,39]
   WRITE[OUT, 61]FORCEX[1] FORCEY[1], TORKX[1] TORKY[1]
61 FORMATI/19H FOUIL TRRIUM FORCES // 5x 4F18 A)
70 CALL SET1
   CALL CHREAL [KAY]
72 GO TO 171,10,1501.KLHF
71 TETPASSI GO TO 90
   DO 80 J=M1.M2
   DO 80 J=1.NN
80 O[T,J]=E0[T,J1
90 CALL FILM
   nn 92 1=M1.M2
   O[1,1]=H[1,1]
PR DII, NNT=H[I, NN]
91 no 100 ITER=1,50
    70 75 J=2.N
    0[1,J]=Q[M+1,J]
95 0[M+3,J]=G[3,J]
    IFIINEL GO TO 97
    GO TO 98
 97 no 94 J=M1,M2
    0[1,1]=011.21
96 D[T, MN]=0[I,N]
 98 CALL GOD
    TE IFAILE GO TO 200
    CALL FORCELITERS
    CALL ALFALITER]
100 T=T+DT
    WRITE[OUT, 1051
105 FORMATTING 3X OHT 12X SHEDROFX 12X SHEDROFY 13X SHEDRIKX 13X
   1 SHTORKY ]
    WRITE[OUT.16] T
 16 FORMAT [F15.81
    no 110 L=1.50
    [L= 50*[KOUNT=1]+[
110 MRITELOUT, 1111 LL, FOPCEXILI, FORCEYILI, TORKX [L], TORKY [L]
111 FORMATTIX I4.4E1R.PJ
    WRITE [OUT, 1201
120 FORMATITHE 50x 20HLAGUER COEFFICIENTS // 5x 1HT 16x 2HAX 16X 2HAY
   115Y 3HAX7 15X 3HAY7 14X 4HAINFI
    no 130 L=1.0RnER
130 WRITE[OUT, 1311LL, AX[L1, AY[L], AXZ[L], AYZ[L1, AINF[L]
131 FORMATT2X 14.5E18.8]
    KOUNT = KOUNT + 1
    IFIT .I.E. TMAXI GO TO 91
    KAY=KAY+1
    XX= ALPHA/DFLDEG
    PO 160 K=1.0RDER
    AXIKI=[AYIK]=AINFIK]+FORCEX[50]]+ XX
    AYIKI= FAY[K] = AINFIK] + FORCEY[501] + XX
    WRITELOUT, 1611 K, ORDER, XM, YM, AX [K], AY [K]
161 FORMATIZI3,2F7,3,2F18,8,26X 2H$P ]
    AX7[K]=[AXZ[K]=ATNF[K]+TORKX[50]]+XX
```

```
WRITE [OUT, 1201
      00 170 L=1.0RDER
  170 WRITE COUT, 1311LL, AXCO 1, AYCL 1, AXZCL 1, AYZCL 1, AINFCL 1
      IFIKAY .LF. NKI GO TO 70
      WRITE[OUT, 1401 KAY
  140 FORMATIIYAHKAY= 14.
                             6H GOOF 1
  200 WRITELOUT, 2011NCASE
  201 FORMATIARX21HCLEAR, 7FRO , CASE NO. 15 1
  150 STOP
      FNN
FIRETC KURFAL
               LIST, SDD
      SURROUTINE CUREALIKAY!
      COMMON SYM, SYM, SA1, SA2, SR1, SP2, T, M, N, M1, M2, NN, DTHE, DETA, XM, YM, A1,
              A2.P1.R2.H163.171.S[63].C[63].HTHF[63.17].HFTA[63.17].
              Q[63,171,P] AMNA, RROVLL, NT, QN[63,171, TMAX, INF, EQ[63,171,
     3
              P[63,17],FORCEX[51],FORCEY[51],TORKX[51],TORKY[51],ORDER,
              ALPHA, AX (20), AY (20), AXZ (20), AYZ (20), ATNF (20), NK, KUUF,
              DELDEG. KOUNT
      LOGICAL FAIL PASS INF
      INTEGER OUT, ORDER
      GO TO [1,2,3,4,5,6], KAY
    1 KLUF = 1
      YM=.7
      DEL DEG= . 1
      TMAX=4.7124
      GO TO 100
    2 KLHF = 1
      YM= 1
      DEL DEG=.1
      GO TO 100
    3 KI UF = 3
      60 TO 100
    4 CONTINUE
    5 CONTINUE
    6 CONTINUE
  100 RETURN
      FND
*IRFTC SSET1
      SUPROUTINE SET1
      COMMON SYM.SYM.SA1.SA2.SR1.SR2.T.M.N.M1.M2.NN.DTHE.DETA.XM.YM.A1.
              A2.B1.R2,H163,171,S1631,C1631,HTHF163,171,HFTA163,171,
     1
              Q163,171,PIAMDA, RROVLL, DT, QD163,171, TMAX, INF, EQ163,171,
     2
              P[63,17], FORCEX[51], FORCEY[51], TORKX[51], TORKY[51], ORDER,
     3
              ALPHA.AX(201, AY 120), AYZ(201, AYZ(201, AINF(20), NK, KLUF.
              DELDEG. KOUNT
      LOGICAL FAIL PASS, INF
       INTEGER OUT, ORDER
      XM = SXM
      YM = SYM
      A1 = SA1
       A2 = SA2
      R1 = SR1
      P2 = SP2
       T = 0.
      KOHNT = 1
      DO 10 K=1,0RDFR
```

```
AYTK1=0.0
      AX7[K]=0.0
      AY7[K]=0.0
   10 AINFIKI=0.0
      RETURN
      FND
             LIST, SOD
TIRFTO ALLFA
      SUPROUTINE ALFAIKKS
      COMMON SYM.SYM.SA1.SA2.SR1.SR2.T.M.N.M1.M2.NN.DTHE.DETA.XM.YM.A1.
             A2.81.82.H(63.17).S(63).C(63).HTHE(A3.17).HETA(63.17).
             Q[63,17], PLAMPA, RROVLL, DT, QQ[63,17], TMAX, INF, EQ[63,17],
     2
             P[63.17],FORCEX[51],FORCEY[51],TORKX[51],TORKY[51].ORDER,
             ALPHA, AX[20], AY[20], AXZ[20], AYZ[20], AINF[20], NK, KLUF,
             DELDEG, KOUNT
      LOGICAL FAIL PASS. INF
      INTEGER OUT, ORDER
      ALPHAT = ALPHA+T
      PO 10 K=1.0RDFR
      POLYN = ALAGER[K+1.ALPHAT]
      AX[K] = AX[K] + DT+POLYN+FORCEX[KK]
      AYIKI = AYIKI + DT*POLYN*FORCEYIKKI
      AX7[K] = AX7[K]+DT+POLYN+TORKX[KK]
      AY7[K] = AY7[K]+DT+POLYN+TORKY[KK]
   10 AINFIK! = AINFIKI+DT*POLYN
      RETURN
      FND
RIRETO FEILM
               LIST.SDD
      SUPROUTINE FILM
      COMMON SYMASYMASA1.SA2.SR1, SP2.T.M.N.M1.M2.NNaDTHE, DETA, XM.YMAA1.
             A2,B1,B2,H163,171,S1631,C1631,HTHF163,171,HFTA163,171,
             Q[63,17],P[AMDA,RROVLL,DT,QQ[63,17],TMAX,[NF,EQ[63,17],
             P[63,17],FORCEX[51],FORCEY[51],TORKY[51],TORKY[51],ORDER,
     3
             ALPHA.AX(20), AY(20), AYZ(20), AYZ(20), AINF(20), NK, KLUE,
             DELDEG. KOUNT
     5
      LOGICAL FAIL PASS, THE
      INTEGER OUT, ORDER
      PIF = 7.14159265
      PAN = PIF/180.0
      DITHE = 360.0 + RAD/FLOATIME
      DETA = 1.0/FLOAT[N]
      M1=2
      M2=M+2
      MM=N+1
      DO 10 J=1,NN
      7 = -.5 +FLOAT[J-1]+NFTA
      XPRIM = XM + [A1-R1] *Z
      YPRIM = YM + 1A2-R21+7
      00 19 T=M1.M2
      ARG = NTHF*FLOAT[1=M1]
      S[T]=SIN[ARG]
      C[]]=COS[ARG]
      H[I,J] = 1.0 + XPRIM+S[I] + YPRIM+C[I]
      IFIHII, JI .LF. 0.01 GO TO 20
      HTHE!!,J] = XPRIM+C[1]- YPRIM+S[1]
   10 HETA[[,J] = [A1-P1]+S[]]+ [A2-P2]+C[]]
```

30 RETURN

```
RETURN
              FND
SIRFTC FFOPCE LIST.SDD
              SUPROUTINE FORCELKY
              DIMENSION SAV1[5], SAV2[5], SAV3[5], SAV4[5]
              COMMON SYM.SYM.SA1,SA2.SR1.SR2.T.M.N.M1.M2.NN.DTHE.DETA.XM.YM.A1.
                               A2,81,82,4163,171,81631,01631,HTHE143,171,HFTA[63,17],
                               Q(63,171,P) AMDA, RROVLL, DT, QD(63,171, TMAX, INF, EQ(63,171,
                               P[63,17], FORCEX[51], FORCEY[51], TORKY[51], TORKY[51], ORNER,
            3
                               ALPHA, AX[201, AY[20], AXZ[20], AYZ[201, AINF[20], NK, KLUE,
                               DELDEG.KOUNT
              LOGICAL FAIL PASS. INF
              INTEGER OUT, ORDER
              DO 20 J=1.NN
              SX=0.0
              SY=0.0
              SX7=0.0
              SY7=0.0
              Z = -.5 + FLOAT(J-1) + DFTA
              MN=M+1
              DO 10 1=M1.MN
              ||U_{i}|| + ||U_
              SX = SX + P[1.J] +S(11+TTHE
              SY = SY + P(I, J) + C(I) + DTHE
              SX7= Z*SX
       10 SY7= Z*SY
              IF(J.E0.1) GO TO 30
              DZ = DETA
              GO TO 40
       30 DZ = 0.0
       40 FORCEXIKI = CLCINT[1,DZ,SX,SAV1]
              FORCEYIKI = CLCINT(1.D7, SY. SAV2)
              TORKY[K] = CLCINT[1,D7,9X7,SAV3]
              TORKY[K] = CLCINT[1,D7,SY7,SAV4]
       20 CONTINUE
              RETURN
              FND
SIRFTC D7A
                                   LIST, SDP
              SUPROUTINE DOD
              COMMON SYM, SYM, SA1, SA2, SR1, SR2, T, M, N, M1, M2, NN, DTHE, DETA, XM, YM, A1,
                               A2,B1,R2,H163,171,S1631,C1631,HTHF163,171,HFTA163,171,
            2
                               Q[63,17], PI AMDA, RROVLL, DT, QQ[63,17], TMAX, INF, EQ[63,17],
            3
                               P[63,17], FORCEX(51], FORCEY(51], TORKX(51], TORKY(51), ORDER,
            4
                               ALPHA.AX[20],AY[20],AXZ[20],AYZ[20],AINF[20],NK,KLUF,
                               DFLDEG, KOUNT
              COMMON/FACTOR/FE, FFE, FFFF, FFFFF
              LOGICAL FAIL PASS, INF
              INTEGER OUT, ORDER
              00 10 T=M1.M2
              00 10 J=2,N
              OT=[0[1+1,J]=0[1-1,J1]+FF
              OTT = \{O[1+1,J]+O[1-1,J]-2,*O[1,J]\}*FFF
              07 = [0[1,J+11-0[1,J-11]*FFFF
              0Z7 = [Q[],J+1] + Q[],J-1]-2.*Q[],J]]+FFFFF
              +PROVLL+[0ZZ+H[1,j]-0Z+HETA[1,J]]]+H[1,J]+(0T++2+RROVLL+
```

```
07++211/PLAMDA
      Tr*nr+[L.1]0 = [L.1]00
      IFIONIT, J] .GT. 100.1 00 TO 25
   10 CONTINUE
      DO 20 1 # M1.M2
      DO 20 J = 2,N
   (L.1)00 = (L.1)0 05
   21 RETURN
  25 WRITE (OUT. 26)
   26 FORMATE 9H BLOW UP 1
      FAIL = .TRUF.
      RETURN
      FNT
SIRFTC LAG
               LIST.SDD
      FUNCTION ALAGERIN, ALPHATS
      S=1.0
      NN=N+1
      00 10 K=1. NN
      S=-S+ALPHAT+FI OATIN-K+13/FLOATIK+K3
   10 ALAGER=ALAGER+S
      RETURN
```

```
FLT FLRO,1,660406, 41048
   . COMMON SY(2), SDX(2), Y(4,1000), DEX(4,1000), ODX(2), H(2,2,100),
       HPWT4[2,2], HPWT5[2,2], HPWT6[2,2], HDWT7[2,2],
               DELTAT, A(2,2,10), HTNF(2,2), AX(10), AY(10), NT, ALPHA, DT,
          MDFG.NORDER.HDOT(2,2,100),HDWT1[2,21,HDWT2[2,2],HDWT3[2,2]
   3,5HM[4],XM[1000],YM[1000],ALPHA1[1000],ALPHA2[1000]
   1.RFTA[4]
    COMMON MK1.MK2.MK3.MK4.MK5,MK6.MK7
    READ (5.10) NDEG. NORDER, KSTEP, ALPHA
 10 FORMAT(316,F10.0)
    00 29 J = 1.NDFG
    00.29 \text{ L} = 1.10
    READIS,111 KO, OQ, XO, YO, AX[KQ], AY[KO]
 11 FORMATI213,2F7.3,2F1R.A1
    [ ] XA= [ ] . [ ] A
 20 A[J, 2, L] = AY[[]
    PFAN(5,15) [[HINF(J,1],[=1,2],J=1,2]
 15 FORMATT4F15.81
    WRITE[6,23] [[HIMF[J.[],1=1,2],J=1,2]
 23 FORMAT[24H HINF 1.1 1.2 2.1 2.2 = 4F18.8 1
    WRITE [6,19]
 19 FORMATI//6H ORDER6X 6HA[1,1], 12X 6HA[1,21 , 12X 6HA[2,1] , 12X
   16H4[2,2] /
                 1
    DO 21 M=1.NORDER
 21 WRITE[6,22] N.A[1,1,N].A[1,2,N].A[2,1,N].A[2,2,N]
 22 FORMATIZX I2. 4F18.81
400 READ[5,410] NT,NTMAX,DELTAT
410 FORMAT/216, F10.01
    FTMAY = NTMAY
    FNT = MT
    NNTT=NT+5
    TT = DELTAT/FNT
 30 READIS,131KLUF.AMASS,FL1.FL2,TRANSI,POLARI,ASYMM
 13 FORMATTIA, 6F10.01
    FL=FL1+EL2
    WRITE 16, 91NDEG, NT. DT, NORDER, NTMAX, ALPHA, KI HE, AMASS, POLARI, TRANSI.
               FL1.FL2.ASYMM
  9 FORMATI26H NO. OF DEG. OF FREEDOM = 12//234 INTEGRATION INTERVAL =
   113.16H WITH TIME STEP F15.8 // 23H LAGUERRE POLY URDER = 12.
   212H MAX TIME = 14. 18H ALPHA = F15.8,9H KLUE = 11//8H MASS =
   3F15.8.5X 9HP0LARI = F15.8.5X 9HTRAMSI = E15.8//
   4 6HFL1 = F15.8, 5x 6HFL2 = E15.8, 5x 8HASYMM = F15.8//]
    PEAD [5,12] [SX[K], SDY[K], K=1, NDEG]
 12 FORMAT[4F12.01
    DO 50 1=1,NDFG
    MTT = MT+1
    PO 60 L=1.NTT
    X[T_*] = SX[T]
    X[[+2,L]=SX[[]+ASYMM
    DEY[[+2,L]=0.0
 60 DEY[T,L] = 0.0
    DEY[]+2,1]=SDx[]]
 50 DEX[[,1] = SDX[[]
    DXM=FL2+DFX(1,1)/FL+FL1+DEX(3,1)/EL
    DYM = FL2+DEX(2,11/EL + FL1+DEX(4,1)/EL
    DALPH1=[DFX[1,1]+DFX[3,1]]/FL
    DALPH2=[DFX[2,1]-DFX[4,1]]/EL
```

```
nn 51 L=1,NTT
    YMTL 1=FL 2+X[1,1]/FL+FL1+X[3,1]/EL
    YM(L1 = FL2+X(2,11/EL+FL1+X(4,11/EL
    AI PHA1 [ ] = [ X [ 1 , 1 ] - X [ 7 , 1 ] 1 / FL
 51 ALPHA2(L1=[X[2,1]-X[4,1])/FL
    T = 0.0
    N1=1
    N2=50
    L=NT+1
    KINT=NT/40
    K1=KINT
    K2=5+KINT
    K3=12*KINT
    K4=20*KTMT
    K5=29+KINT
     K6=35*KINT
     K7=39+KINT
     MK1 = ¥1+1
     MK2 = K2+1
     MK3 = K3+1
     MK4=K4+1
     MK5=K5+1
     MKK=K6+1
     MK7= 47+1
     CALL LAGIIFR
     DDFLT=DELTAT+DT
     WRITE[6,1000]
                    L8x 7HHD[1,1], 12x 7HHD[1,2], 12x 7HHD[2,1], 12X
1000 FORMATI//4H
           7HHD[2,2] / ]
     DC 1001 K=1.NT
1001 WRITE[6,1002] K, HDOT(1,1,K), HDOT(1,2,K), HDOT(2,1,K), HDOT(2,2,K)
1002 FORMATIZY 12. 4F18.81
     no an i=1.NnFg
     DO 80 J=1,NDEG
     HDHT1[1,J] = HDOTIT,J,MK1]+DDELT+.06222951
     HDWT2[],J]= HDOT[],J,MK2]+DDELT + .13971184
      HNWT3(I,J) = HNOT(I,J,MK3) + NDFLT+.19945984
     HDWT4[],J]=HDOT[],J,MK4]+DDELT+.19719764
     HDWT511.J1=HDOT11.J.MK51+DDELT+.19945983
     HDWTA[[,J]=HDOT[],J,MK6]+DDELT+.13971184
     HDWT7[1,J]=HDOT[1,J,MK7]+DDELT+.06222950
     H[I, J, 1] = [H[I, J, 1] + HINF[I, J] 1 + \Pi T
  80 CONTINUE
  95 LK1 = L-K1
     FK5 = F-K5
     LK3 = L-K3
     1 K4=1 -K4
     LK5=1 -K5
     LKK=L-K6
     LK7=L=K7
     DO 210 I=1.NDFG
     SUM[1]=0.0
     SUM[1+2]=0.0
     DO 150 J=1.NDFG
     SUM[]]=SUM[]]+X[J, LK1]+HDWT1[J, ]]+
    1X[J.LK2] *HDWT2[J.T]+
    1X[J,LK3]+HDWT3[J,T]+
```

```
1X[J, [K4] * HDWT4[J, 1]+
      1X[J, LK5] + HDWT5[J, T1+
     1X(J, LK6) * HDWT6[J, T]+
      1XIJalK71+HDWT7[Jat1+
      [ Le Le Line | Le Line | Line 
         SUM[[+2]=SUM[]+2]+X[.1+2, LK1]+HDWT1[J.]1+
      1X[J+2.1K21+HDWT2[J.11+
      1X[J+2,[K3]*HDWT3[J,[]+
      1X[J+2, LK41+HDWT4[J, [1+
      1 X [ ] + 2 , L K 5 ] * H D W T 5 [ ] , I ] +
      1X[J+2, LK5] * HDWT6[J, ]]+
      1×[J+2, K71*HDWT7[J, I1+
      1X[J+2,[]*H[J,T,1]
150 CONTINUE
210 CONTINUE
         DXMNU=DXM+[SUM[1]+SUM[3]]/AMASS
         XMIL +13=XM[L]+.5+IDXMNU+DXM]+DT
         DYMNU=PYM+[SUM[2]+SUM[4]1/AMASS
         YM 1 + 1 1 = YM 1 1 1 + . 5 + 1 D Y M NU + D YM 1 + D T
         DANUITEDALPHI + [POLARI+2.0+DALPH2+DT+EL1+SUM[1]+FL2+SUM[3]]/TRANSI
         ALPHA1 (L+11=ALPHA1 (L1+DT+1DANU1+DALPH11+.5
         DANU2=DALPH2+[+P0] ART+2.0+DALPH1+DT+FL1+SUM[2]-EL2+SUM[4]]/TRANST
         ALPHAZIL+1] = AI PHAZIL 1+DT + [DANU2+DAI PH21+.5
         DXM=DXMN!!
         DAMEDAMNII
         DALPHI=DANU1
         DALPH2=DANU2
         1 = 1+1
         Y[1,1]=XM[L]+FL1*ALPHA1[L]
         X[2,[]=YM[L]+FL1*ALPHA2[L]
         Y[3,1]=XM[L]=FL2+ALPHA1[1]
         XI4.1]=YM[L1-FL2+ALPHA2]11
          T = T + DT
          IF(L/50+50-L .EQ.O .OR. L.GE.NTMAX) GO TO 320
         GO TO 95
320 WRITF[6,311]
311 FORMATEIH1 15X 4HSTEP 12X 2HXM 18X 2HYM 15X 6HALPHA1 14X 6HALPHA21
          00.350 \text{ K} = N1.N2
          IFI[K/KSTEP+KSTEP+K.EQ.O1.AND.[K.GF.NNTT.AND.K.LE.NTMAX]1GD TO 700
          GO TO 705
700 01=[YM[K-1]+XM[K-3]-YM[K-2]++2]/[XM[K]+XM[K-2]-XM[K-1]++2]
          02=[YM[K-1]*YM[K-3]-YM[K-2]*+2]/[YM[K]*YM[K-2]-YM[K-1]*+2]
          03=[ALPHA1[K-1]+AIPHA1[K-3]-ALPHA1[K-2]++21/
       1 [ALPHA1 [K] *ALPHA1 [K-2] = ALPHA1 [K-1] * +2]
          04=[ALPHA2[K-1]+AIPHA2[K-3]-ALPHA2[K-2]++2]/
       1[ALPHA2[K] + ALPHA2[K-2] - ALPHA2[K-1] + + 2]
          IFIG1.GT.C.O. BFTAXM=-ALOGIG1]/[2.+DT]
          IFID2.GT.O.DIRETAYM=-ALOGIG21/12.*DT1
          TF103 .GT. 0.01 RFTA1=-ALOG1031/12.+DT1
          IFIQ4 .GT. 0.01 RFTA2=-ALOG[04]/12.+DT]
          YOY= XM[Y+3]*FXP[RFTAXM*[
                                                                        3. *DT11
          Y1X= XM[K+2]*FXP[RFTAXM*i
                                                                        2.*DT11
          Y2Y= XM[K=1]*FXP[RFTAXM*?
                                                                       TT11
          YOY= YM[K-3]+FXP[HFTAYM+[
                                                                       3.*DT11
          Y1Y= YM[K-2] *FXPIRFTAYM*!
                                                                        2.*DT11
          Y2Y= YM[K-1]*FXPIRFTAYM*!
                                                                        DTII
```

```
Y1A1 = ALPHA1(K-21+EYP(BFTA1+C
                                       2.+0711
     Y2A1 = ALPHA1(K-11+EYPIBFTA1+1
                                       DTII
                                       3. +nT11
     YDA2 = ALPHA2(K-31+EYP(BFTA2+1
                                       2. +nT11
     Y1A2 # ALPHA2(K-21+EYP(BFTA2+1
     Y2A2 = ALPHA2(K-11+EXP(BFTA2+1
                                       DTII
      ARG1 = [Y0X+Y2X]/12.+Y1X]
      ARG2 = [Y0Y+Y2Y]/12.+Y1Y]
      ARG3 = [YDA1 + YPA1]/[P.+Y1A1]
      ARG4 = [YOA2 + YPAP]/[P.+YIAP]
      TF[APG1 .GE. 1. .NR. APG2 .GF. 1.] GO TO 712
      JETARGS .GE. 1. .OR. ARG4 .GE. 1.1 GO TO 712
      GAMMAX=ACOS[ARG1]/DT
      GAMMAY=ACOS[ARG2]/DT
      GAMA1 = ACOS[ARG3]/DT
      GAMAPEACOS[ARR4]/DT
      GO TO: 710
 712 GAMMAX = 0.
      GAMMAY = D.
      GAMAT = 0.
      BAMAP = 0.
 710 URITE(6,711)K.BETAXM, RETAYM, RETA1, RETA2, GAMMAX, GAMMAY, GAMA1, GAMA?
  711 FORMATISY12HTIME STEP = 13/10x 18HGROWTH FACTOR X = E15.8/10x
     1 18HGROWTH FACTOR Y = E15.8/10X 23HGROWTH FACTOR ALPHA1 = E15.8/
     210Y 23HGROWTH FACTOR ALPHA2 = E15.8/10X 9NFREG X = E15.8,
     310x 9HFRFQ Y = F15.8/10x10HFRFQ A1 = E15.8/10x10HFRFQ A2 = E15.81
  785 WRITE[6,312]K,XM[K],YMIK1,ALPHA1 LK1,ALPHA2 K]
  350 CONTINUE
  312 FORMAT[15x 14,4F20.8]
      00 + 10 = 10
      N2 = N2 + 50
      IFI L.GT. NTMAX1 GO TO 500
      60 TO 95
  500 GO TO [30,400,6001,KLUF
  600 STOP
      FND
  ELT DLAGHE, 1, 660303, 36661
      CHRROHTINE LAGUER
C
      COMMON SY[2], SDX(2], Y[4,1000], DEX[4,1000], DDX[2], H[2,2,100],
         HPWT4[2,2], HPWT5[2,2], HPWT6[2,2], HDWT7[2,2],
                 DELTAT, A 12, 2, 10], HINF (2, 2), AX (10), AY (10), NT, ALPHA, DT,
            HDFG.NORDFR.HDOT12.2.1001, HDWT1(2,21, HDWT2(2,2), HDWT3(2,2)
     3.SUM[4].YM[1000].YM[1000].ALPHA1[1000].ALPHA2[1000]
     1.8FTA[4]
      COMMON MK1.MK2.MK3.MK4.MK5.MK6.MK7
      KORDER = NORDER-1
      70 100 LL=1.8
      60 TO 11.2.3.4.5.6.7.81.LL
    1 L=1
      GO TO O
    2 LEMKI
      GO TO 9
    3 L= WK2
      GO TO 9
    4 Lamk3
      GO TO 9
```

```
5 L=MK4
     GO TO 9
 16 L=MK5
     GO TO O
   7 I EMKK
     GO TO 9
   8 LEMKT
   9 TT=FLOAT(L=11+DT
     ALPHAT = ALPHA+TT
     00 80 1=1.NDEG
     DO 80 J=1,NDEG
     HH=0.0
     DO 50 K=1.NORDER
     POLYM = ALAGERIK-1.ALPHATI
  50 HH = HH+POLYN+A[I.J.K]
     HIT.J.L] = HH+EXPI-ALPHAT]
  BO CONTINUE
     ALPHAT = ALPHAT+.00001
     DO 200 I=1.NDFG
     DO 200 J=1.NDEG
     HD =0.0
     DO 250 K=1.KORDER
 250 HD=HD+A[], J, K+1]+FLOAT(K1+[ALAGER[K,ALPHAT]-ALAGER[K-1,ALPHAT]]
            /ALPHAT
    1
     HDOT!I.J.L3 = ALPHA+PHR+FXP[-ALPHAT1-H:I.].L11
 200 CONTINUE
 100 CONTINUE
     WRITE[6,1101
 110 FORMATI//4H LBX 6HH[1,1], 12x 6HH[1,2], 12x 6HH[2,1], 12x
             6HH[2,2] / 1
    1
     DO 120 L=1.NT
 120 WRITF[A,121] L.H[1,1,L],H[1,2,L],H[2,1,L],H[2,2,L]
 121 FORMATIZX 12. 4F18.81
     RETURN
     END
ELT ALAGEP, 1, 651230. 34045
     FUNCTION ALAGERIN ALPHATI
     S=1.0
     ALAGFR=1.0
     NN=N+1
     DO 18 #=1,NN
     S=-S+ALPHAT+FLOATIN-K+1]/FLOAT[K+K]
  10 ALAGER=ALAGER+S
     RETURN
     FND
```

Security Classification

DOCUMENT CONTROL DATA - R&D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)			
1. ORIGINATING ACTIVITY (Corporate author)		24. REPORT SECURITY C LASSIFICATION	
The Franklin Institute Research Laboratories		UNCLASSIFIED .	
20th and the Benjamin Franklin Parkway		2.b. GROUP	
Philadelphia, Pennsylvania 19103		None	
3. REPORT TITLE			
DETERMINATION OF GAS BEARING STABILITY BY RESPONSE TO A STEP-JUMP			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Interim Report July, 1966			
5. AUTHOR(S) (Lest name, first name, initial)			
Elrod, Jr., H. G.; McCabe, J. T.; Chu, T. Y.			
6. REPORT DATE	74. TOTAL NO. OF PA	AGES	7b. NO. OF REFS
July, 1966	56		7
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)		
Nonr-2342(00)			
b. PROJECT NO.	T 420/0 27		
Task NR 062-316	I-A2049-27		
c.	9 b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)		
d.			
10. A VA IL ABILITY/LIMITATION NOTICES			
•			
Reproduction in Whole or in Part is Permitted for any Purpose of the			
U.S. Government.			
11. SUPPL EMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY		
!			. *
13. ABSTRACT			

The Stability of a gas bearing is treated by a new procedure in which the bearing film is characterized by its responses to step-jump displacements. Duhamel's theorem is invoked to generalize these step responses in a system of dynamical equation. Stability is determined by calculation of a "growth factor" for each degree of freedom.

DD . FORM 1473

UNCLASSIFIED
Security Classification

DISTRIBUTION LIST

Chief of Naval Research Department of the Navy Washington 25, D.C. Attn: Code 438 (3) Code 429 Code 463

Commanding Officer Office of Naval Research Branch Office 495 Summer Street Boston, Massachusetts 02110

Commanding Officer Office of Naval Research Branch Office 219 S. Dearborn Street Chicago, Illinois 60604

Commanding Officer Office of Naval Research Branch Office 207 West 24th Street New York. New York 10011

Commanding Officer (25) Office of Naval Research London Branch Office Box 39 Fleet Post Office New York, New York 09510

Commanding Officer Office of Naval Research Brench Office 1030 East Green Street Pasadena 1, California

Commanding Officer Office of Naval Research Branch Office 1000 Geary Street San Francisco 9, California

Office of Naval Research Resident Representative University of Pennsylvania 3636 Walnut Street Philadelphia, Pennsylvania 19104

Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Attn: Code 305 (Dr. J. H. Huth) Code 342 (E. A. Bukzin) Code 644C(R. M. Petros) Code 1500(J. A. Gorman)

Chief, Bureau of Naval Weapons Department of the Navy Washington 25, D.C. Attn: Code RAPP-41 (S. M. Collegemma) Code RREN-4 (M. R. Walter)

Director Naval Research Laboratory Washington. D.C. Attn: Code 2000 Code 5230 (6)

Special Projects Office Department of the Nevy Washington 25, D.C. Attn: Code SP230 (D. Gold) Code SP001 (Dr. J. P. Craven)

Commanding Officer and Director U.S. Navy Marine Engineering Laboratory Annapolis, Maryland Attn: Code 850 Code 852 (Watt V. Smith)

Material Laboratory Library Building 291, Code 912B New York Naval Shipyard Brooklyn 1, New York

Superintendent U.S. Naval Postgraduate School Monterrey, California Attn: Library, Technical Reports Station

Commanding Officer U.S. Naval Avionics Facility Indianapolis 18, Indiana Attn: J. G. Weir

Commanding General U.S. Army Material Command Research & Development Directorate Research Division Washington, D.C. 20315 Attn: Mr. Norman L. Klein

Chief of Research and Development Office of Chief of Staff Department of the Army Pentagon Building Washington 25, D.C.

Commanding General (2) U.S. Army Engineering R&D Laboratories Fort Belvoir, Virginia Attn: W. M. Crin, Nuclear Power Field Office Technical Documents Center

DISTRIBUTION LIST (Cont.)

Aerospace Corporation
P.O. Box 95085
Los Angeles, California 90045
Attn: Library, Report Acquisitions Group

AiResearch Manufacturing Company P.O. Box 5217 Phoenix, Arizona 85010 Attn: Mrs. J. F. Mackenzie, Librarian

American Institute of Aeronautics and Astronautics Technical Information Service 750 Third Avenue New York, New York 10017

American Society of Lubrication Engineers 838 Busse Highway Park Ride, Illinois 60068

Chairman (2)
Research Committee on Lubrication
The American Society of Mechanical Engineers
United Engineering Center
345 East 47th Street
New York 17, New York

Dr. W. A. Gross (2)
Ampex Corporation
401 Broadway
Redwood City, California 94063

Mr. Stanley L. Zedekar Department 244-2, Building 71 Autonetics P.O. Box 4181 Anaheim, California 92803

C. D. Flanigen
Director of Engineering
Lycoming Division AVCO Corporation
Stratford, Connecticut

Dr. Russell Dayton Battelle Memorial Institute 505 King Avenue Columbus 1, Ohio

Mr. Ralph H. Larson Research Laboratories Division Bendix Aviation Corporation Southfield, Michigan

Walt Tucker Nuclear Engineering Department Brookhaven National Laboratory Upton, Long Island, New York Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Avenue Pasadena, California Attn: Library

Dr. F. Osterle Mechanical Engineering Department Carnegie Institute of Technology Pittsburgh, Pennsylvania 15213

Professor M. C. Shaw, Head Department of Mechanical Engineering Carnegie Institute of Technology Pittsburgh, Pennsylvania 15213

Dr. W. T. Sawyer Department of Mechanical Engineering Catholic University Washington, D.C.

Mr. C. W. Synder, Manager of Engineering Defense Engineering Defense Operations Division Chrysler Corporation P.O. Box 757 Detroit, Michigan 48231

Robert H. Josephson, Manager Commercial Development Clevite Corporation Mechanical Research Division 540 East 105th Street Cleveland, Ohio 44108

Professor V. Castelli Department of Mechanical Engineering Columbia University New York, New York 10017

Professor H. G. Elrod, Jr. (2) Department of Mechanical Engineering Columbia University New York, New York 10017

Mr. Gerald B. Speen Division Manager Conductron P.O. Box 844 Northridege, California

Mr. J. W. Lower, Chief Engineer-Inertial Components Honeywell Aero Division 2600 Ridgway Road Minneapolis

DISTRIBUTION LIST (Cont.)

Mr. Don Moors (2) Litton Systems 5500 Canoga Avenue Woodland Hills, California

Lockheed Aircraft Corporation Missiles and Space Division Technical Information Center 3251 Hanover Street Palo Alto, California

Massachusetts Institute of Technology Instrumentation Laboratory 68 Albany Street Cambridge, Massachusetts 02139 Attn: Library, IL1-109

Dr. R. W. Mann (Room 3-459A) Engineering Projects Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Professor Herbert H. Richardson Room 3-461 Massachusetts Institute of Technology Cambridge, Massachusetts 02139

McDonnell Aircraft Corporation Post Office Box 516 St. Louis, Missouri 63166 Attn: Library, Dept. 218

Dr. Beno Sternlicht Mechanical Technology Incorporated 968 Albany-Shaker Road Latham, New York

Mr. Carl F. Graesser, Jr. Director of Research New Hampshire Ball Bearings, Inc. Peterborough, New Hampshire

Professor A. Charnes The Technological Institute Northwestern University Evanston, Illinois

Mr. E. L. Swainson, Chief of Research Precision Products Department, Nortronics A Division of Northrop Corporation 100 Morse Street Norwood, Massachusetts

Northrop Norair 3901 W. Broadway Hawthorne, California 90250 Attn: Tech. Info., 3924-32 Professor P. R. Trumpler
Towne School of Civil and Mechanical
Engineering
University of Pennsylvania
Philadelphia, Pennsylvania

Radio Corporation of America Camden 2, New Jersey Attn: Library, Building 10-2-5

Mr. Robert S. Stiegler Rocketdyne Nucleonics Subdivision 6633 Canoga Avenue Canoga Park, California

Dr. Ralph A. Burton Southwest Research Institute San Antonia, Texas

Mrs. Florence Turnbull Engineering Librarian Sperry Gyroscope Company Great Neck, New York

W. G. Wing Sperry Gyroscope Company 2T120 Great Neck, New York

Thomson Ramo Wooldridge TAPCO Group New Devices Laboratory 7209 Platt Avenue Cleveland 4, Ohio

Union Carbide Nuclear Company Division of Union Carbide Corporation P.O. Box P Oak Ridge, Tennessee 37831 Attn: R. G. Jordan

Professor J. Modrey
Department of Mechanical Engineering
Purdue University
Lafayette, Indiana

Ralph F. DeAngelias, Technical Librarian Norden Division of United Aircraft Corp. Helen Street Norwalk, Connecticut 06852

Unidynamics/St. Louis Division Library Universal Match Corporation 472 Paul Avenue St. Louis, Missouri 63135